翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Digital television in Europe : ウィキペディア英語版
Digital television

Digital television (DTV) is the transmission of audio and video by digitally processed and multiplexed signal, in contrast to the totally analog and channel separated signals used by analog television. Digital TV can support more than one program in the same channel bandwidth.〔(【引用サイトリンク】 title=HDTV Set Top Boxes and Digital TV Broadcast Information )〕 It is an innovative service that represents the first significant evolution in television technology since color television in the 1950s.〔Kruger, L. G. (2001). Digital Television: An Overview. Hauppauge, New York: Nova Publishers.〕 Several regions of the world are in different stages of adaptation and are implementing different broadcasting standards. Below are the different widely used digital television broadcasting standards (DTB):
* Digital Video Broadcasting (DVB) uses coded orthogonal frequency-division multiplexing (OFDM) modulation and supports hierarchical transmission. This standard has been adopted in Europe, Australia and New Zealand.
* Advanced Television System Committee (ATSC) uses eight-level vestigial sideband (8VSB) for terrestrial broadcasting. This standard has been adopted by six countries, United States, Canada, Mexico, South Korea, Dominican Republic and Honduras.
* Integrated Services Digital Broadcasting (ISDB) is a system designed to provide good reception to fix receivers and also portable or mobile receivers. It utilizes OFDM and two-dimensional interleaving. It supports hierarchical transmission of up to three layers and uses MPEG-2 video and Advanced Audio Coding. This standard has been adopted in Japan and the Philippines. ISDB-T International is an adaptation of this standard using H.264/MPEG-4 AVC that been adopted in most of South America and is also being embraced by Portuguese-speaking African countries.
* Digital Terrestrial Multimedia Broadcasting (DTMB) adopts time-domain synchronous (TDS) OFDM technology with a pseudo-random signal frame to serve as the guard interval (GI) of the OFDM block and the training symbol. The DTMB standard has been adopted in the People's Republic of China, including Hong Kong and Macau.〔Ong, C. Y., Song, J., Pan, C., & Li, Y.(2010, May). Technology and Standards of Digital Television Terrestrial Multimedia Broadcasting (in Wireless Communications ), Communications Magazine, IEEE , 48(5),119-127〕
* Digital Multimedia Broadcasting (DMB) is a digital radio transmission technology developed in South Korea as part of the national IT project for sending multimedia such as TV, radio and datacasting to mobile devices such as mobile phones, laptops and GPS navigation systems.
==History==

Digital TV's roots have been tied very closely to the availability of inexpensive, high performance computers. It wasn't until the 1990s that digital TV became a real possibility.〔(【引用サイトリンク】title= The Origins and Future Prospects of Digital Television )
In the mid-1980s as Japanese consumer electronics firms forged ahead with the development of HDTV technology, and as the MUSE analog format proposed by NHK, a Japanese company, was seen as a pacesetter that threatened to eclipse U.S. electronics companies. Until June 1990, the Japanese MUSE standard—based on an analog system—was the front-runner among the more than 23 different technical concepts under consideration. Then, an American company, General Instrument, demonstrated the feasibility of a digital television signal. This breakthrough was of such significance that the FCC was persuaded to delay its decision on an ATV standard until a digitally based standard could be developed.
In March 1990, when it became clear that a digital standard was feasible, the FCC made a number of critical decisions. First, the Commission declared that the new ATV standard must be more than an enhanced analog signal, but be able to provide a genuine HDTV signal with at least twice the resolution of existing television images. Then, to ensure that viewers who did not wish to buy a new digital television set could continue to receive conventional television broadcasts, it dictated that the new ATV standard must be capable of being "simulcast" on different channels. The new ATV standard also allowed the new DTV signal to be based on entirely new design principles. Although incompatible with the existing NTSC standard, the new DTV standard would be able to incorporate many improvements.〔
The final standard adopted by the FCC did not require a single standard for scanning formats, aspect ratios, or lines of resolution. This outcome resulted from a dispute between the consumer electronics industry (joined by some broadcasters) and the computer industry (joined by the film industry and some public interest groups) over which of the two scanning processes—interlaced or progressive—is superior. Interlaced scanning, which is used in televisions worldwide, scans even-numbered lines first, then odd-numbered ones. Progressive scanning, which is the format used in computers, scans lines in sequences, from top to bottom. The computer industry argued that progressive scanning is superior because it does not "flicker" in the manner of interlaced scanning. It also argued that progressive scanning enables easier connections with the Internet, and is more cheaply converted to interlaced formats than vice versa. The film industry also supported progressive scanning because it offers a more efficient means of converting filmed programming into digital formats. For their part, the consumer electronics industry and broadcasters argued that interlaced scanning was the only technology that could transmit the highest quality pictures then (and currently) feasible, i.e., 1,080 lines per picture and 1,920 pixels per line. Broadcasters also favored interlaced scanning because their vast archive of interlaced programming is not readily compatible with a progressive format.〔
Digital television transition started in the late 2000s. All the governments across the world set the deadline for analog shutdown by the 2010s. Initially the adoption rate was low. But soon, more and more households were converting to digital televisions. The transition is expected to be completed worldwide by mid to late 2010s.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Digital television」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.